Nutritional support in renal disease and dialysis

Alastair Forbes, UK

Enrico Fiaccadori, Parma University Medical School
Daniel Teta, University Hospital, Lausanne
Noël Cano, Clermont-Ferrand

Old and new
Acute and chronic

Malnutrition in CKD

- Prevalence of malnutrition high: ~35% in patients beginning haemodialysis
- Mostly in patients with moderate and severe CKD (stage 4 and 5, GFR <30)
- Characterized by loss of muscle mass, loss of visceral protein and then of fat mass
- Adverse effects on natural course of CKD, quality of life, morbidity and mortality

Malnutrition in AKI

- Inadequate supply of nutrients
- Cytokines and toxins of critical illness
- Endocrine factors (especially insulin resistance)
- Metabolic acidosis
- Loss of nutrients in RRT

Fiaccadori E et al., NDT Plus 2010; 3:1-7

Fiaccadori E et al., JASN 1999; 10:581-93

Parenteral Nutrition in Adult Renal Failure
NIM Cano, M Aparicio, G Brunori, JJ Carrerro, B Cianciaruso, E Fiaccadori, B Lindholm, V Teplan, D Fouque, G Guarnieri
Clinical Nutrition 2009; 28:401-414
Protein catabolic rate in critically ill patients with AKI on RRT

Protein catabolic rate (pPCR), g/kg/day

Resting energy expenditure in AKI similar to that in other ICU patients

Faisy C et al., Am J Clin Nutr 2003; 78:241-9

No advantage to N balance in increasing calories in AKI

Nutrition prescribing in AKI patients on RRT

• Protein/amino acids:
 −~1.5 g/kg/day
 −Plus 0.2 g/kg/day to compensate for RRT

• Energy:
 −~25 kcal/kg/day as glucose
 −~10 kcal/kg/day as lipid

Discussion on “correct” weight

Nutrition prescribing in AKI patients on RRT

• Standard multivitamin and trace element preparations usually sufficient
• Particular attention to:
 − selenium, thiamine, vitamin C, folate and copper
• Routinely supplement with 100mg vitamin C

Micronutrients in AKI patients on RRT

Enteral nutrition is the preferred modality in nutrition in AKI

• Enteral nutrition is safe in AKI
• No clinically relevant increase in complications
• Increased gastric residual volumes common however
• Combination with parenteral support may be needed to reach nitrogen target

ESSEN Guidelines 2009

ESSEN Guidelines 2009
Nutritional support for acute kidney injury

Algorithm for nutrition in AKI patients

Implications for practice

There is no strong evidence to conclude that EALH, high calorie-TPN, high-dose amino acids or nitrogen and fat improves the survival and recovery from AKI in critically ill patients.

Chronic kidney disease

Malnutrition in CKD

- Reduced oral intake because of (excessively?) restrictive diet
- Anorexia of uraemia
- Loss of nutrients (heavy proteinuria)
- MIA syndrome (malnutrition-inflammation-atherosclerosis)
- Hormonal/metabolic abnormalities
- Gastrointestinal symptoms
- Other (low social status, poverty, dentition)

Nutrition in CKD before dialysis

- Prevention of muscle loss
- Prevention or treatment of malnutrition
- Reduction of metabolic disorders
- Positive impact on overall prognosis
- Should not worsen CKD progression

Spontaneous decline in protein intake as GFR declines

Ikizler A et al. JASN 1995; 6: 1386-1391
Low protein diets in CKD

- Alleviation of the uraemic syndrome
- Reduction of proteinuria
- Reduction of complications of the uraemic syndrome
 - hyperparathyroidism
 - bone disease
 - hyperphosphataemia (1 g of protein = 15 mg P)

Effect of low protein diet (LPD) on GFR

<table>
<thead>
<tr>
<th>(0.6 g prot/kg/day)</th>
<th>Favor Excess Protein</th>
<th>Favor Low Protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jungers et al.</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Bouchard and LaGrene</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Bergman et al.</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Ruml et al.</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Duhamel et al.</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Zeller et al.</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Williams et al.</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Irie et al.</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>D'Amico et al.</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>Rosenman et al.</td>
<td>229</td>
<td></td>
</tr>
<tr>
<td>Klahr et al.</td>
<td>265</td>
<td></td>
</tr>
<tr>
<td>Locatelli et al.</td>
<td>438</td>
<td></td>
</tr>
<tr>
<td>Klahr et al.</td>
<td>585</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1919</td>
<td></td>
</tr>
</tbody>
</table>

Gain of GFR of 0.53 ml/min/year

Low protein diet - cautions

- Safe only if no malnutrition at baseline
- Must be monitored for development of malnutrition during follow-up +/- adaptation of regimen
- Must not increase risk of calorie restriction
- Important role for skilled renal dietician

Very low protein diet (VLPD) of 0.3 g/kg/day: effect on proteinuria

Aparicio et al, Nephron 1988

Very low-protein (VLPD) diet

In advanced CKD (stages 4-5)
VLPD with keto-amino acids (KA) may be considered

0.28-0.30 g protein/kg iBW/day
100 mg KA/kg iBW/day
Very low-protein (VLPD) diet

Proved advantages of VLPD + KA versus LPD
• Better nitrogen balance in steady state patients
• Greater decrease in blood urea
• Better overall nutritional status, provided adequate energy intake of 30-35 kcal/kg/day
• Reduced proteinuria
• Probably reduced rate of decline in GFR

Chauveau P et al, J Ren Nutr 2007

Prevalence of malnutrition in haemodialysis

n = 7,123

BMI < 20 kg/m² 24%
Lean body mass < 90% centile 62%
Albumin < 35 g/l 20%
Transthyretin < 300 mg/l 36%
nPNA < 1 g/kg/d 35%

Normalised Protein Nitrogen Appearance
= protein catabolic rate normalised for weight
= urinary nitrogen excretion

Aparicio M et al. Nephrol Dial Transplant 1999

Malnutrition and survival

Reverse epidemiology

Kalantar-Zadeh K. Kidney Int 2003

Haemodialysis and nutrition

Malnutrition in HD

Associated with:
• Infection
• Cardiac failure
• Acute cardiovascular events
• Decreased physical capacity
• Decreased quality of life
• Increased hospitalisation rates
• Decreased survival*

Kalantar-Zadeh K. Kidney Int 2003

Recommended macronutrients

<table>
<thead>
<tr>
<th></th>
<th>ESPEN ¹</th>
<th>NKF ²</th>
<th>EBPG ³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein g/kg/day</td>
<td>1.2-1.4</td>
<td>1.2</td>
<td>>1.1</td>
</tr>
<tr>
<td>Energy kcal/kg/day</td>
<td>35</td>
<td>< 60 y: 35</td>
<td>30-40</td>
</tr>
<tr>
<td>> 60 y: 30</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ - Toigo G et al. Clin Nutr, 2000
³ - Fouque D et al. EBPG. Nephrol Dial Transplant 2007
Recommended micronutrients

ESSEN 2000
- Pyridoxine, mg: 10-15
- Vitamin C, mg: 30-60
- Folic Acid, mg: 1
- Vitamin D: determined by Ca/PTH
- Zinc, mg: 15
- Selenium, µg: 50-70

Toigo G et al. Clin Nutr, 2000

Nutritional support in HD

- Dietary counselling
- Oral supplements
- Intradialytic parenteral nutrition
- Enteral tube feeding

Severity of malnutrition
- Spontaneous alimentation
- Patient compliance

Dietary counselling

Albumin in 6 month RCT

Leon JB et al. J Ren Nutr 2001

Oral nutritional supplements

Sharma M, J Renal Nutr 2003

Intradialytic parenteral nutrition

Chartow GM et al. Am J Kidney Dis 1994

Nutritional support

- Oral supplements or IDPN?

 - Both oral supplements and IDPN can improve nutritional status
 - Oral supplements are simpler and cheaper

Is there any advantage to IDPN?
- nutritionally?
- in terms of morbidity and mortality?
Enteral nutrition

- Polymeric EN via naso-gastric tube or gastrostomy
- Necessary during severe undernutrition, particularly when spontaneous intake < 20 kcal/kg/day and/or when IDPN is insufficient
- Enteral nutrition should be preferred to full parenteral nutrition*
- Poorly investigated

Exercise augments the acute anabolic effects of IDPN in haemodialysis patients

- **Nandrolone decanoate in HD patients**
 - **Nandrolone Decanoate Group**
 - 100 mg/week during 6 mo (n = 14)
 - **Placebo Group**
 - (n = 15)

Please note that the asterisk () indicates a lack of investigation or insufficient data.*
Daily dialysis

- **Protein (g/kg/day)**
 - Standard HD
 - Daily HD (6 mo)
 - Daily HD (12 mo)

- **Energy (kcal/kg/day)**
 - Standard HD
 - Daily HD (6 mo)
 - Daily HD (12 mo)

Galland et al., *Kidney Int* 2001

Conclusions for HD patients

- Dietary counselling, ONS and IDPN effective
- Effect independent of CRP
- Increase in transthyretin during nutritional support is associated with increased survival
- IDPN is indicated in malnourished HD patients failing oral supplementation (before enteral tube feeding)
- Exercise improves the efficacy of IDPN
- Consider androgens or daily dialysis if unresponsive

Peritoneal dialysis and nutrition

PD vs HD: Prevalence of malnutrition

<table>
<thead>
<tr>
<th></th>
<th>PD</th>
<th>HD</th>
<th>p > 0.001</th>
</tr>
</thead>
<tbody>
<tr>
<td>n = 224 PD / 263 HD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Results in men (n = 124 PD / 155 HD)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean values</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body weight (kg)</td>
<td>70.6</td>
<td>65.2</td>
<td></td>
</tr>
<tr>
<td>Albumin (g/l)</td>
<td>37</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>nPNA (g/kg/d)</td>
<td>0.91</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td>MAMC (cm)</td>
<td>25</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>TSF (cm)</td>
<td>11</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Body fat (%)</td>
<td>22</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>SGA (% malnutrition)</td>
<td>42.3</td>
<td>30.8</td>
<td></td>
</tr>
</tbody>
</table>

Nutritional status: HD vs PD

Patients on PD have:
- More fluid overload (5-15 g/day)
- Greater protein losses (100-150 g/day)
- Positive energy balance
- More negative protein balance
- Increase in body fat mass and weight over time

Nutritional aspects specific to PD

- Lower food intake and appetite than HD patients (role of PD fluids in the peritoneal cavity)
- Impaired gastric emptying
- More gastro-intestinal symptoms
Nutritional aspects specific to PD

- **Protein losses via peritoneal membrane:**
 - ~10g/day (mainly albumin and Ig),
 - up to 100g/day if peritonitis
 - amino acids losses: 3-4 g/day (30% essential AA)

- **Glucose absorption through peritoneal membrane:**
 - >100g/day; average: 300-450 kcal/day
 - about 20% of total energy intake
 - spontaneous energy intake in PD patients: 23-24 kcal/kg/day
 - total energy intake in PD patients: 29-33 kcal/kg/day

Recommended intakes in PD patients

<table>
<thead>
<tr>
<th>Micronutrients</th>
<th>Pyridoxine, mg</th>
<th>Vitamin C, mg</th>
<th>Folic Acid, mg</th>
<th>Vitamin D</th>
<th>Zinc, mg</th>
<th>Selenium, µg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td>100</td>
<td>1</td>
<td>judge by Ca++ & PTH</td>
<td>15</td>
<td>50-70</td>
</tr>
</tbody>
</table>

Including energy supply (glucose) from PD fluids

Recommended intakes in PD patients (Macronutrients)

<table>
<thead>
<tr>
<th></th>
<th>ESPEN (1)</th>
<th>NKF (2)</th>
<th>EBPG (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein g/kg/day</td>
<td>1.2 - 1.5</td>
<td>1.2 – 1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>Energy kcal/kg/day</td>
<td>>60 y: 35*</td>
<td>< 60 y: 35*</td>
<td>< 60 y: 35*</td>
</tr>
<tr>
<td></td>
<td>>60 y: 30-35*</td>
<td>>60 y: 30-35*</td>
<td>>60 y: 30-35*</td>
</tr>
</tbody>
</table>

1 - ESPEN. Clinical Nutrition 2006; 25: 295-310

Dietary counselling in PD

- No studies in PD patients
- Data from HD can perhaps be extrapolated
- Nutritional counselling in PD should improve compliance with nutritional recommendations

Oral nutritional supplements

- Randomized clinical trial (US)
 - serum albumin < 3.8 g/dL
 - > 90% compliance during a 2w run-in period
 - Supplement group: 3.6 g EAA 3x/day
 - Control group: placebo
 - 3 months
 - N = 47 (29 HD / 18 PD)

ONS in PD – Mexican study

Amino acid-based intraperitoneal parenteral nutrition (AA-IPPN)

- Administration of intraperitoneal 1.1% AA solution (commercialized in a PD solution)
- Incorporation in protein synthesis (metabolic studies using intraperitoneal leucine (13C))

Analysis of 11 studies of intraperitoneal infusions (4 RCT)

- Improvement in nitrogen balance
- Minor improvement in nutrition parameters

Nutritional support in PD patients

<table>
<thead>
<tr>
<th>ONS</th>
<th>AA-IPPN</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 kcal/day (standard formulas)</td>
<td>87 mmol/L = 11g/L</td>
</tr>
<tr>
<td>• 5 -10 kcal/kg/d</td>
<td>70-80% AA absorbed in 6 hours</td>
</tr>
<tr>
<td>• 0.4 - 0.6 g prot/kg/d</td>
<td></td>
</tr>
</tbody>
</table>

- AA-IPPN more efficient and better tolerated
- AA-IPPN is the 1st choice nutritional support in PD patients with acceptable spontaneous intake

Enteral nutrition (tube feeding)

- Polymeric EN, administered via naso-gastric tube
- Some experience in small infants on PD
- Not investigated in adult PD patients
- Percutaneous endoscopic gastrostomy or jejunostomy not recommended in adult PD patients (used in children)

- Indicated in severe undernutrition, particularly when spontaneous intakes are < 20 kcal/kg/day, and if AA-IPPN or ONS insufficient to cover nutrition needs

Nutrition in PD patients: algorithm

Undernourished PD patient

<table>
<thead>
<tr>
<th>Mild undernutrition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy: < 30 kcal/kg/d</td>
</tr>
<tr>
<td>Protein: < 1.1 g/kg/d</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Severe undernutrition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body weight loss > 10% in 6 months</td>
</tr>
<tr>
<td>Prealbumin < 300 mg/l</td>
</tr>
</tbody>
</table>

- Dietary counseling
- No improvement
- Spontaneous intakes > 20 kcal/kg/d
- Spontaneous intakes < 20 kcal/kg/d and/or stress conditions
- Enteral nutrition (EN) or IVPN (if EN not possible or if encapsulating peritonitis)
- AA-IPPN (or ONS) or IDPN
- No improvement

Conclusions

- Malnutrition is common in AKI and CKD
- It has a bad prognosis if untreated
- Identification and early intervention is however helpful
- AKI needs extra nitrogen but little increase in energy
- Protein restriction is valuable in pre-dialytic CKD if no malnutrition
- Dialysis increases nitrogen requirements
- IDPN is valuable in treatment of malnutrition in HD
- AA-IPPN is valuable in malnutrition in PD
- Multimodal strategies are recommended